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Abstract
The notion of homogeneous tensors is discussed. We show that there is a one-to-
one correspondence between multivector fields on a manifold M, homogeneous
with respect to a vector field � on M, and first-order polydifferential operators
on a closed submanifold N of codimension 1 such that � is transversal to N.
This correspondence relates the Schouten–Nijenhuis bracket of multivector
fields on M to the Schouten–Jacobi bracket of first-order polydifferential
operators on N and generalizes the Poissonization of Jacobi manifolds.
Actually, it can be viewed as a super-Poissonization. This procedure of passing
from a homogeneous multivector field to a first-order polydifferential operator
can also be understood as a sort of reduction; in the standard case—a half of
a Poisson reduction. A dual version of the above correspondence yields in
particular the correspondence between �-homogeneous symplectic structures
on M and contact structures on N.

PACS numbers: 02.40.Ma, 02.40.Re, 02.40.Vh
Mathematics Subject Classification: 53D17, 53D10

1. Introduction

As has been observed in [KoS], a Lie algebroid structure on a vector bundle E can be identified
with a Gerstenhaber algebra structure on the exterior algebra of multisections of E, Sec(∧E),

which is just a graded Poisson bracket (Schouten bracket) on Sec(∧E) of degree −1, that
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is, the Schouten bracket is graded commutative, satisfies the graded Jacobi identity and the
graded Leibniz rule.

In the particular case of the Lie algebroid structure on the tangent vector bundle of an
arbitrary manifold M one obtains the Schouten–Nijenhuis bracket [[·, ·]]M on the space of
multivectors on M.

For a graded commutative algebra with 1, a natural generalization of a graded Poisson
bracket is a graded Jacobi bracket: we replace the graded Leibniz rule by that {a, ·} is a
first-order differential operator on A, for every a ∈ A (cf [GM2]).

Graded Jacobi brackets on Sec(∧E) of degree −1 are called Schouten–Jacobi brackets.
These brackets are in one-to-one correspondence with pairs (E, φ0), where φ0 ∈ Sec(E∗)
is a 1-cocycle in the Lie algebroid cohomology of E. In this case, we said that (E, φ0) is a
generalized Lie algebroid (Jacobi algebroid) (see [GM1, IM2]).

A canonical example of a Jacobi algebroid is (T 1M, (0, 1)) where T 1M = T M ⊕ R is
the Lie algebroid of first-order differential operators on the space of smooth functions on M,

C∞(M), with the bracket

[[X ⊕ f, Y ⊕ g]]1
M = [X, Y ] ⊕ (X(g) − Y (f ))

for X⊕f, Y ⊕g ∈ Sec(T 1M) (see [M, N]) and the 1-cocycle φ0 = (0, 1) ∈ �1(M)⊕ C∞(M).
It is well known that a Poisson structure on a manifold M can be interpreted as a canonical

structure for the Schouten–Nijenhuis bracket [[·, ·]]M of multivector fields on M, i.e., as an
element � ∈ Sec(∧2T M) satisfying the equation [[�,�]]M = 0. In a similar way, a Jacobi
structure is a canonical structure for the Jacobi bracket [[·, ·]]1

M .
On the other hand, it is proved in [DLM] that if � is a homogeneous Poisson tensor with

respect to a vector field � on the manifold M and N is a one-codimensional closed submanifold
of M such that � is transversal to N then � can be reduced to a Jacobi structure on N.

The main purpose of this paper is to give an explicit (local) correspondence between
�-homogeneous multivector fields on M and first-order polydifferential (i.e. skew-symmetric
multidifferential) operators on N. This correspondence relates the Schouten–Nijenhuis bracket
of multivector fields on M to the Schouten–Jacobi bracket of first-order polydifferential
operators on N. This is of course a generalization of [DLM] formulated in a structural way.
It explains the role of homogeneity for certain reduction procedures, e.g., in passing from
Poisson to Jacobi brackets (in mechanics, from symplectic form to a contact form). But our
result can be applied in the Nambu–Poisson geometry (cf corollary 3.13) or multisymplectic
geometry and classical field theories as well.

The paper is organized as follows. In section 2 we recall the notions of Schouten–
Nijenhuis and Schouten–Jacobi brackets associated with any smooth manifold. In section 3.1
we introduce the notion of �-homogeneous tensors on a homogeneous structure (M,�)

(a pair where M is a manifold and � is a vector field on M ).
Moreover, for a particular class of homogeneous structures (strict homogeneous

structures), we will characterize the �-homogeneous contravariant k-tensors in terms of their
corresponding k-ary brackets.

The main result of the paper is theorem 3.11 of section 3.2, which provides the one-to-one
correspondence between homogeneous multivector fields and polydifferential operators we
have already mentioned. This result is a generalization of the result of [DLM] and it allows
us also to relate homogeneous Nambu–Poisson tensors on M to Nambu–Jacobi tensors on N.
These results are local. We obtain global results in the particular case of the Liouville vector
field � = �E of a vector bundle τ : E → M . We called this correspondence a Poisson–
Jacobi reduction, since it can be understood as a sort of reduction, a half of a Poisson reduction
(cf remark 3.12, ii).
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Finally, we prove a dual version of theorem 3.11. What we get is a one-to-
one correspondence between homogeneous differential forms on M and elements of
Sec(∧(T ∗N ⊕ R)) represented by pairs (α0, α1), where α0 is a k-form on N and α1 is a
(k −1)-form on N. This correspondence relates the de Rham differential on M to the deformed
Lie algebroid differential associated with the Schouten–Jacobi bracket [[·, ·]]1

M (see [IM2,
GM1]).

Note that the Grassmann algebra Sec(∧T M) can be viewed as the algebra of functions on
the supermanifold �T ∗M (the space of the cotangent bundle to M with reversed parity of fibres,
cf [AKSZ]); the Schouten–Nijenhuis bracket on Sec(∧T M) represents the canonical (super)
Poisson bracket on �T ∗M . In this picture, the equation [[�,�]]M = 0 for a Poisson tensor � is
just a particular case of the master equation in the Batalin–Vilkovisky formalism. The algebraic
structure of the Batalin–Vilkovisky formalism in field theories (see [Ge]) has been recognized
as a homologic vector field generating a Schouten–Nijenhuis-type bracket on the corresponding
graded commutative algebra like the Schouten–Nijenhuis bracket (Gerstenhaber algebra) of a
Lie algebroid [KoS, KS2]. The Schouten–Jacobi bracket can be regarded as a super-Jacobi
bracket, so theorem 3.11 can be understood as a super or fermionic version of the original
result [DLM]. Note also that higher-order tensors represent higher-order operations on the
ring of functions. Together with the Schouten–Nijenhuis or Schouten–Jacobi bracket, possibly
for higher gradings, this can be a starting point for certain strongly homotopy algebras (cf the
paper [St] by Stasheff who realized that homotopy algebras appear in the string field theory).
A relation of some strongly homotopy algebras with the Batalin–Vilkovisky formalism was
discovered by Zwiebach and applied to the string field theory [Zw]. Theorem 3.11 means that
in homogeneous cases we can reduce the structure to the same super-Lie bracket on a smaller
manifold. The difference is that we do not deal with derivations but with first-order differential
operators. The structure of the associative product is deformed by this bracket isomorphism,
so we do not get a super-Poisson but a super-Jacobi bracket. On the level of differential forms
this corresponds to a deformation of the de Rham differential of the type d1µ = dµ + φ ∧ µ,
where φ is a closed 1-form. This is exactly what was already considered by Witten [Wi] and
used in studying the spectra of Laplace operators.

2. Graded Lie brackets

In this section we will recall several natural graded Lie brackets of tensor fields associated
with any smooth manifold M. First of all, on the tangent bundle T M , we have a Lie algebroid
bracket [·, ·] defined on the space X(M) of vector fields—derivations of the algebra C∞(M)

of smooth functions on M.
If A(M) = ⊕k∈ZAk(M) is the space of multivector fields (i.e., Ak(M) = Sec(∧kT M))

then we can define the Schouten–Nijenhuis bracket (see [Sc, Ni]) [[·, ·]]M : Ap(M)×Aq(M) →
Ap+q−1(M) as the unique graded extension to A(M) of the bracket [·, ·] of vector fields, such
that

(i) [[X, f ]]M = X(f ), for X ∈ X(M) and f ∈ C∞(M);
(ii) [[P,Q]]M = −(−1)(p−1)(q−1)[[Q,P ]]M , for P ∈ Ap(M),Q ∈ Aq(M).

(iii) [[P,Q∧R]]M = [[P,Q]]M ∧R + (−1)(p−1)qQ∧ [[P,R]]M , for P ∈ Ap(M),Q ∈ Aq(M)

and R ∈ A∗(M);
(iv) (−1)(p−1)(r−1)[[[[P,Q]]M,R]]M + (−1)(p−1)(q−1)[[[[Q,R]]M,P ]]M + (−1)(q−1)(r−1)

[[[[R,P ]]M,Q]]M = 0, for P ∈ Ap(M),Q ∈ Aq(M) and R ∈ Ar(M).

On the other hand, if �(M) = ⊕k∈Z�k(M) is the space of differential forms (that is,
�k(M) = Sec(∧k(T ∗M))), we can consider the usual differential dM : �p(M) → �p+1(M)
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as the map characterized by the following properties:

(i) dM is a R-linear map.
(ii) dM(f ) is the usual differential of f , for f ∈ C∞(M).

(iii) dM(α ∧ β) = dMα ∧ β + (−1)pα ∧ dMβ, for α ∈ �p(M) and β ∈ �q(M).
(iv) d2

M = 0, that is, dM is a cohomology operator.

In a similar way, on the bundle of first-order differential operators on C∞(M), T 1M =
T M ⊕ R, there exists a Lie algebroid bracket given by

[[X ⊕ f, Y ⊕ g]]1
M = [X, Y ] ⊕ (X(g) − Y (f )) (2.1)

for X ⊕ f, Y ⊕ g ∈ Sec(T 1M) (see [M, N]).
The space Dk(M) = Sec(∧k(T 1M)) of sections of the vector bundle ∧k(T 1M) → M

can be identified with Ak(M)⊕Ak−1(M) in the following way. If IM = 0 ⊕1M ∈ Sec(T 1M)

and φM ∈ Sec((T 1M)∗) is the ‘canonical closed 1-form’ defined by φM(X ⊕ f ) = f , then
there exists an isomorphism between Dk(M) and Ak(M) ⊕ Ak−1(M) given by the formula

Dk(M) = Sec(∧k(T 1M)) → Ak(M) ⊕ Ak−1(M)

D �→ D0 ⊕ D1 ∼= D0 + IM ∧ D1

where D1 = iφM
D and D0 = D − IM ∧ D1.

As for A(M), we can define on D(M) = ⊕k∈ZDk(M) a canonical Schouten–Jacobi
bracket [[·, ·]]1

M : Dk(M) × Dr(M) → Dk+r−1(M) (see [GM1, IM2])

[[P 0 + IM ∧ P 1,Q0 + IM ∧ Q1]]1
M = [[P 0,Q0]]M + (k − 1)P 0 ∧ Q1 + (−1)k(r − 1)P 1 ∧ Q0

+ IM ∧ ([[P 1,Q0]]M − (−1)k[[P 0,Q1]]M + (k − r)P 1 ∧ Q1)

(2.2)

for P = P 0 + IM ∧ P 1 ∈ Dk(M) and Q = Q0 + IM ∧ Q1 ∈ Dr(M). The bracket [[·, ·]]1
M is

the unique graded bracket characterized by the following:

(i) it extends the Lie bracket on D1(M) defined by (2.1);
(ii) [[X ⊕ f, g]]1

M = X(g) + fg, for X ⊕ f ∈ D1(M) and g ∈ C∞(M);
(iii) [[D,E]]1

M = −(−1)(p−1)(q−1)[[E,D]]M , for D ∈ Ap(M),E ∈ Aq(M).
(iv) [[D,E ∧ F ]]1 = [[D,E]]1

M ∧ F + (−1)(p−1)qE ∧ [[D,F ]]1
M − (iφM

D) ∧ E ∧ F , for
D ∈ Dp(M),E ∈ Dq(M) and F ∈ D∗(M);

(v) (−1)(p−1)(r−1)
[[

[[D,E]]1
M,F

]]1
M

+ (−1)(p−1)(q−1)
[[

[[E,F ]]1
M,D

]]1
M

+ (−1)(q−1)(r−1)

× [[
[[F,D]]1

M,E
]]1

M
= 0, for D ∈ Dp(M),E ∈ Dq(M) and F ∈ Dr(M).

On the other hand, the space 	k(M) = Sec(∧k(T 1M)∗) of sections of the vector bundle
∧k(T 1M)∗ → M can be identified with �k(M) ⊕ �k−1(M). Actually, there exists an
isomorphism between 	k(M) and �k(M) ⊕ �k−1(M) given by the formula

	k(M) = Sec(∧k(T 1M)∗) → �k(M) ⊕ �k−1(M)

α → α0 ⊕ α1 ∼= α0 + φM ∧ α1

where

α1 = iIM
α α0 = α − φM ∧ α1.

In other words,

α(X1 ⊕ f1, . . . , Xk ⊕ fk) = α0(X1, . . . , Xk) +
k∑

i=1

(−1)i+1fiα
1(X1, . . . , X̂i, . . . , Xk)

for X1 ⊕ f1, . . . , Xk ⊕ fk ∈ Sec(T 1M).
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As for �(M), we can define on 	(M) = ⊕k∈Z	k(M) the Jacobi differential
d1

M : 	k(M) → 	k+1(M) as the map characterized by the following properties:

(i) d1
M is a R-linear map.

(ii) If f ∈ C∞(M) and j 1f ∈ Sec((T 1M)∗) is the first jet prolongation of f then d1
Mf = j 1f .

(iii) d1
M(α ∧β) = d1

Mα ∧β + (−1)pα ∧ d1
Mβ −φM ∧α ∧β, for α ∈ 	p(M) and β ∈ 	q(M).

(iv)
(
d1

M

)2 = 0, that is, d1
M is a cohomology operator.

Under the isomorphism between 	k(M) and �k(M) ⊕ �k−1(M) the operator d1
M is given by

d1
M(α0, α1) = (dMα0,−dMα1 + α0)

for (α0, α1) ∈ �k(M) ⊕ �k−1(M) ∼= 	k(M).

To finish with this section, we recall that it is easy to identify P ∈ Ak(M) (resp., D = D0 +

IM ∧ D1 ∈ Dk(M)) with a polyderivation {·, . . . , ·}P : C∞(M)× k)· · · ×C∞(M) → C∞(M)

(resp., a first-order polydifferential operator {·, . . . , ·}D: C∞(M)× k)· · · ×C∞(M) → C∞(M))
given by

{f1, . . . , fk}P = 〈P, df1 ∧ · · · ∧ dfk〉 (2.3)(
resp., {f1, . . . , fk}D = 〈D, j 1f1 ∧ · · · ∧ j 1fk〉

= {f1, . . . , fk}D0 +
k∑

i=1

(−1)i+1fi{f1, . . . , f̂i , . . . , fk}D1

)
(2.4)

for all f1, . . . , fk ∈ C∞(M). Note that (A(M), [[, ]]M) is naturally embedded into(
D(M), [[, ]]1

M

)
. Actually, elements of (A(M), [[, ]]M) are just those D ∈ (

D(M), [[, ]]1
M

)
for which iφM

D = 0.

3. Homogeneous structures

3.1. Homogeneous tensors

In this section we will consider a particular class of tensors related to a distinguished vector
field on a manifold.

Let M be a differentiable manifold and let � be a vector field on M. The pair (M,�) will
be called a homogeneous structure.

A function f ∈ C∞(M) is �-homogeneous of degree n, n ∈ R, if �(f ) = nf . The space
of �-homogeneous functions of degree n will be denoted by Sn

�(M). Similarly, a tensor T is
�-homogeneous of degree n if L�T = nT . Here L denotes the Lie derivative. In particular,
� itself is homogeneous of degree zero. As a result of the properties of the Lie derivative we
get the following properties of the introduced homogeneity gradation.

(i) The tensor product T ⊗ S of �-homogeneous tensors of degrees n and m, respectively, is
homogeneous of degree n + m.

(ii) The contraction of tensors of homogeneity degrees n and m is homogeneous of degree
n + m.

(iii) The exterior derivative preserves the homogeneity degree of forms.
(iv) The Schouten–Nijenhuis bracket of multivector fields of homogeneity degrees n and m is

homogeneous of degree n + m.
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These properties justify our choice of the homogeneity gradation, which is compatible with the
polynomial gradation introduced in [TU] and differs by a shift from homogeneity gradation
of contravariant tensors in some other papers (e.g. [Li]).

Example 3.1.

(i) The simplest example of a homogeneous structure is the pair (N × R, ∂s), where ∂s is the
canonical vector field on R. (N × R, ∂s) will be called a free homogeneous structure. In
this case

Sn
�(M)={f ∈ C∞(N × R): f (x, s)= ensfN(x), with fN ∈ C∞(N),∀(x, s)∈ N × R}.

(ii) Let M = N × R and � = s∂s, s being the usual coordinate on R. In this case

Sn
�(M)={f ∈ C∞(N × R): f (x, s)= snfN(x), with fN ∈ C∞(N),∀(x, s)∈ N × R}.

(iii) If M = R and � = s2∂s , then S0
�(M) = R and Sn

�(M) = {0} for n = 0 because the
differential equation s2 ∂f

∂s
= nf has no global smooth solutions on R for n = 0.

Using coordinates adapted to the vector field, one can easily prove the following result.

Proposition 3.2. Let (M,�) be a homogeneous structure and N be a closed submanifold in
M of codimension 1 such that � is transversal to N. Then, there is a tubular neighbourhood
U of N in M and a diffeomorphism of U onto N × R which maps �|U into ∂s

Let us introduce a particular class of homogeneous structures which will be important in the
following.

Definition 3.3. A homogeneous structure (M,�) is said to be strict if there is an open-dense
subset O ⊂ M such that for x ∈ O

T ∗
x M = {

df (x): f ∈ S1
�(M)

}
.

Example 3.4.

(i) It is almost trivial that free homogeneous structures are strict homogeneous.
(ii) An example of a strict homogeneous structure with � vanishing on a submanifold is the

following. Let E → M be a vector bundle (of rank > 0) over M and let � = �E be
the Liouville vector field on E. Then, for n ∈ Z+, S

n
�(E) consists of smooth functions on

E which are homogeneous polynomials of degree n along fibres. In particular, functions
from S1

�(E) are linear on fibres, hence generate T ∗E over E0, the bundle E with the
zero-section removed.

Now, generalizing the situation for tensors, we will consider first-order polydifferential
operators.

For a homogeneous structure (M,�), we say that D ∈ Dk(M) is �-homogeneous
of degree n if [[�,D]]1

M = nD. For P ∈ Ak(M) interpreted as an element of D(M),
it is �-homogeneous of degree n when [[�,P ]]M = L�P = nP , i.e. the introduced
gradation is compatible with the gradation for tensors. It is easy to see, using (2.2), that
P = P 0 + IM ∧ P 1 ∈ Dk(M) is �-homogeneous of degree n if and only if P 0 ∈ Ak(M)

and P 1 ∈ Ak−1(M) are �-homogeneous of degree n. In particular, the identity operator is
homogeneous of degree zero.

We will call elements of Dk(M) which are �-homogeneous of degree 1 − k simply
�-homogeneous.
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Proposition 3.5. Suppose that D ∈ Dk(M) is �-homogeneous of degree n and that
D′ ∈ Dk′

(M) is �-homogeneous of degree n′. Then

(i) D ∧ D′ is �-homogeneous of degree n + n′.
(ii) [[D,D′]]1

M is �-homogeneous of degree n + n′.

Proof. These properties are immediate consequences of properties of the Schouten–Jacobi
bracket [[·, ·]]1

M (see section 2) and the fact that iφM
� = 0. �

We can characterize homogeneous operators for strict homogeneous structures in terms of the
corresponding k-ary brackets as follows.

Proposition 3.6. Let (M,�) be a strict homogeneous structure. Then

(i) P ∈ Ak(M) is �-homogeneous of degree n if and only if {f1, . . . , fk}P is �-homogeneous
of degree n + k, for all f1, . . . , fk ∈ S1

�(M), where {·, . . . , ·}P is the bracket defined as in
(2.3).

(ii) D ∈ Dk(M) is �-homogeneous of degree n if and only if {f1, . . . , fk}D is �-homogeneous
of degree n + deg(f1) + · · · + deg(fk), for all �-homogeneous functions f1, . . . , fk of
degree 1 or 0.

Proof. The proof of (i) follows from the identity

�({f1, . . . , fk}P ) = 〈[[�,P ]]M, df1 ∧ · · · ∧ dfk〉 + 〈P,L�(df1 ∧ · · · ∧ dfk)〉
for f1, . . . , fk ∈ C∞(M), where L denotes the usual Lie derivative operator, and the fact that
df1 ∧ · · · ∧ dfk , with �-linear functions f1, . . . , fk , generate ∧kT ∗M over an open-dense
subset.

The proof of (ii) is analogous. �

Next, we will consider the particular case when � is the Liouville vector field �E on a vector
bundle E. We recall that in such a case, S1

�E
(E) is the space of linear functions on E and

S0
�E

(E) is the space of basic functions on E (see example 3.4).

Corollary 3.7. Let E → M be a vector bundle over M,�E be the Liouville vector field on E
and (E,�E) be the corresponding strict homogeneous structure. Then

(i) P ∈ Ak(E) is �E-homogeneous if and only if P is linear, that is

{f1, . . . , fk}P ∈ S1
�E

(E) for f1, . . . , fk ∈ S1
�E

(E). (3.1)

(ii) D ∈ Dk(M) is �E-homogeneous if and only if

{f1, . . . , fk}D ∈ S1
�E

(E) for f1, . . . , fk ∈ S1
�E

(E)

{1, f2, . . . , fk}D ∈ S0
�E

(E) for f2, . . . , fk ∈ S1
�E

(E).
(3.2)

Proof. The proof of (i) follows from proposition 3.6.
On the other hand, if D ∈ Dk(M) is �E-homogeneous then, using proposition 3.6 again,

we deduce that (3.2) holds. Conversely, suppose that (3.2) holds. Then, if f 0
1 ∈ S0

�E
(E) and

f 1
1 , . . . , f 1

k ∈ S1
�E

(E), we have that

S1
�E

(E) � {
f 0

1 f 1
1 , f 1

2 , . . . , f 1
k

}
D

= f 0
1

{
f 1

1 , f 1
2 , . . . , f 1

k

}
D

+ f 1
1

{
f 0

1 , f 1
2 , . . . , f 1

k

}
D

− f 0
1 f 1

1

{
1, f 1

2 , . . . , f 1
k

}
D
.

This implies that

f 1
1

{
f 0

1 , f 1
2 , . . . , f 1

k

}
D

∈ S1
�E

(E) ∀f 1
1 ∈ S1

�E
(E).
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Thus,{
f 0

1 , f 1
2 , . . . , f 1

k

}
D

∈ S0
�E

(E) for f 0
1 ∈ S0

�E
(E) and f 1

2 , . . . , f 1
k ∈ S1

�E
(E).

(3.3)

Now, we will see that{
1, f 0

2 , f 1
3 , . . . , f 1

k

}
D

= 0 for f 0
2 ∈ S0

�E
(E) and f 1

3 , . . . , f 1
k ∈ S1

�E
(E). (3.4)

If f 1
2 ∈ S1

�E
(E), we obtain that

S0
�E

(E) � {
1, f 0

2 f 1
2 , f 1

3 , . . . , f 1
k

}
D

= f 0
2

{
1, f 1

2 , f 1
3 , . . . , f 1

k

}
D

+ f 1
2

{
1, f 0

2 , f 1
3 , . . . , f 1

k

}
D
.

Therefore, we deduce that

f 1
2

{
1, f 0

2 , f 1
3 , . . . , f 1

k

}
D

∈ S0
�E

(E) ∀f 1
2 ∈ S1

�E
(E)

and, consequently,{
1, f 0

2 , f 1
3 , . . . , f 1

k

}
D

= 0.

Next, we will prove that{
f 0

1 , f 0
2 , f 1

3 , . . . , f 1
k

}
D

= 0 for f 0
1 , f 0

2 ∈ S0
�E

(E) and f 1
3 , . . . , f 1

k ∈ S1
�E

(E).

(3.5)

If f 1
2 ∈ S1

�E
(E) then, using (3.3) and (3.4), we have that

S0
�E

(E)� {
f 0

1 , f 0
2 f 1

2 , f 1
3 , . . . , f 1

k

}
D

= f 0
2

{
f 0

1 , f 1
2 , f 1

3 , . . . , f 1
k

}
D

+ f 1
2

{
f 0

1 , f 0
2 , f 1

3 , . . . , f 1
k

}
D
.

This implies that

f 1
2

{
f 0

1 , f 0
2 , f 1

3 , . . . , f 1
k

}
D

∈ S0
�E

(E) ∀f 1
2 ∈ S1

�E
(E)

and thus (3.5) holds.
Proceeding as above, we also may deduce that{

f 0
1 , . . . , f 0

r , f 1
r+1, . . . , f

1
k

}
D

= 0

for f 0
1 , . . . , f 0

r ∈ S0
�E

(E) and f 1
r+1, . . . , f

1
k ∈ S1

�E
(E), with 2 � r � k.

Therefore, D is �E-homogeneous (see proposition 3.6). �

Remark 3.8. We remark that Poisson (Jacobi) structures which are homogeneous with
respect to the Liouville vector field of a vector bundle play an important role in the study
of mechanical systems. Some examples of these structures are the following: the canonical
symplectic structure on the cotangent bundle T ∗M of a manifold M, the Lie–Poisson structure
on the dual space of a real Lie algebra of finite dimension, and the canonical contact structure
on the product manifold T ∗M × R (for more details, see [IM1]).

3.2. Poisson–Jacobi reductive structures

Definition 3.9. A Poisson–Jacobi (PJ) reductive structure is a triple (M,N,�), where (M,�)

is a homogeneous structure and N is a one-codimensional closed submanifold of M such that
� is transversal to N.

From proposition 3.2, we deduce the following result.
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Proposition 3.10. Let (M,N,�) be a PJ reductive structure. Then, there is a tubular
neighbourhood U of N in M such that (U,N,�|U) is diffeomorphically equivalent to the free
PJ reductive structure (N × R, N, ∂s).

Now, we pass to the main result of the paper.
Let (M,N,�) be a PJ reductive structure. Let us consider a tubular neighbourhood U

of N, like in proposition 3.8. There is a unique function 1̃N ∈ S1
�(U) such that (1̃N)|N ≡ 1.

Under the diffeomorphism between U and N × R, 1̃N is the positive function on N × R

(x, s) ∈ N × R → es ∈ R.

Let us denote by F the foliation defined as the level sets of this function and by A(F), D(F)

the spaces of elements of A(U),D(U) which are tangent to F . Here we call P ∈ Ak(U)

tangent to F if Px ∈ ∧kTxFx , where Fx is the leaf of F containing x ∈ U . Consequently,
P 0 + IU ∧ P 1 ∈ Dk(U) is tangent to F if P 0 ∈ Ak(U) and P 1 ∈ Ak−1(U) are tangent to F .

It is obvious that any P ∈ Ak(U) has a unique decomposition P = P 0
F + �|U ∧ P 1

F ,
where P 0

F ∈ Ak(F) and P 1
F ∈ Ak−1(F). We can use this decomposition to define, for each

P ∈ Ak(U), operators J (P ) ∈ Dk(U) and JN(P ) ∈ Dk(N) by the formulae

J (P ) = P 0
F + IU ∧ P 1

F

and

JN(P ) = J (P )|N .

Theorem 3.11. Let (M,N,�) be a PJ reductive structure and let U be a tubular
neighbourhood of N in M as in proposition 3.10. Then

(i) the mapping J defines a one-to-one correspondence between �|U -homogeneous
multivector fields on U and �|U -homogeneous first-order polydifferential operators on U
which are tangent to the foliation F;

(ii) the mapping JN defines a one-to-one correspondence between �|U -homogeneous
multivector fields on U and first-order polydifferential operators on N.

Moreover,

(a) {f1, . . . , fk}P = {f1, . . . , fk}J (P ) and ({f1, . . . , fk}P )|N = {f1|N, . . . , fk |N }JN (P )

(b) [[J (P ), J (Q)]]1
U = J ([[P,Q]]U) and [[JN(P ), JN(Q)]]1

N = JN([[P,Q]]U),

for all f1, . . . , fk ∈ S1
�(U) and �|U -homogeneous tensors P,Q ∈ A(U).

Proof. The tensors J (P ) and JN(P ) clearly satisfy (a).
Note that the foliation F is �-invariant, since 1̃N is �-homogeneous. This implies that

[[�,A(F)]]M ⊂ A(F), so that
[[
�|U , P 0

F
]]

U
+ �|U ∧ [[

�|U , P 1
F
]]

U
is the decomposition of

[[�|U , P ]]U for each tensor P = P 0
F + �|U ∧ P 1

F ∈ Ak(U). This means that if P is �|U -
homogeneous then J (P ) is also �|U -homogeneous. Conversely, for a pair P 0 ∈ Ak(F), P 1 ∈
Ak−1(F),�|U -homogeneous of degree 1 − k, the operator P = P 0 + �|U ∧ P 1 is �|U -
homogeneous. Thus, J is bijective.

Now, due to the fact that for homogeneous P, [[�|U , P ]]U = (1 − k)P = [[IU , P ]]1
U ,

we get by direct calculations using the properties of the Schouten–Jacobi bracket that (b) is
satisfied.

To prove (ii) we first note that for a �|U -homogeneous P, the operator (1̃N)k−1J (P )

is homogeneous of degree zero, i.e. it is �|U -invariant. It follows that (1̃N)k−1J (P ) and
J (P ) are uniquely determined by JN(P ). To show that JN is surjective, let us take
DN = P 0

N + IN ∧ P 1
N ∈ Dk(N). There are unique P̄ 0 ∈ Ak(U), P̄ 1 ∈ Ak−1(U) which
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are �|U -invariant and equal to P 0
N and P 1

N , respectively, when restricted to N. We just use the
flow of �|U to extend tensors on N to �|U -invariant tensors on U. Then P̃ 0 = (1̃N)1−kP̄ 0

and P̃ 1 = (1̃N)1−kP̄ 1 give rise to a �|U -homogeneous tensor P̃ = P̃ 0 + �|U ∧ P̃ 1, with
JN(P̃ ) = DN . �

Remark 3.12.

(i) The above result is a generalization of the main theorem in [DLM] which states that
�-homogeneous Poisson tensors on M can be reduced to Jacobi structures on N. Indeed
if � is Poisson, then [[�,�]]|U = 0, so [[JN(�), JN(�)]]1

N = 0 which exactly means
that JN(�) is a Jacobi structure on N (see [GM1, IM2]). Actually, it is a sort of super-
Poissonization. Indeed, the Nijenhuis–Schouten bracket [[·, ·]]M on M is a graded (or
super) Poisson bracket, while the Schouten–Jacobi bracket [[·, ·]]1

M on N is a graded (or
super) Jacobi bracket (cf [GM2]).

(ii) We call this construction a Poisson–Jacobi reduction, since it is a half way to the Poisson–
Poisson reduction in the case when � = iφN

JN(�) is the vector field on N whose orbits
have a manifold structure. Then, the bracket {·, . . . , ·}JN (�) restricted to functions which
are constant on orbits of � gives a Poisson bracket on N/�. In the case when M is
symplectic, the Poisson structure on N/� obtained in this way is the standard symplectic
reduction of the Poisson structure associated with a symplectic form � on M with respect
to the coisotropic submanifold N. An explicit example of the above construction is the
following one. Suppose that the manifold M is R

2n, the submanifold N is the unit sphere
S2n−1 in R

2n and the vector field � on R
2n is

� = 1

2

n∑
i=1

(
qi∂qi + pi∂pi

)
where (qi, pi)i=1,...,n are the usual coordinates on R

2n. It is clear that � is transversal to
N. Actually, the map

R
2n − {0} → S2n−1 × R x →

(
x

‖x‖ , ln ‖x‖2

)
is a diffeomorphism of R

2n − {0} onto S2n−1 × R = N × R which maps �|R2n−{0} into
∂s . Thus, we will take as a tubular neighbourhood of N = S2n−1 in M = R

2n the open
subset U = R

2n − {0}. Now, let � be the 2-vector on M defined by

� =
n∑

i=1

(
∂qi ∧ ∂pi

)
.

� is the Poisson structure associated with the canonical symplectic 2-form ω on M = R
2n

given by

ω =
n∑

i=1

dqi ∧ dpi.

A direct computation proves that �|U is a �|U -homogeneous Poisson structure. Therefore,
it induces a Jacobi structure JN(�|U) on N = S2n−1. Note that JN(�|U) is just the Jacobi
structure associated with the canonical contact 1-form η on S2n−1 defined by

η = 1

2
j ∗

(
n∑

i=1

(qi dpi − pi dqi)

)
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where j : S2n−1 → R
2n is the canonical inclusion (for the definition of the Jacobi

structure associated with a contact 1-form, see, for instance, [ChLM]). This Poisson–
Jacobi reduction can be associated also with a reduction with respect to a Hamiltonian
action of S1 on R

2n. Indeed, consider the harmonic oscillator Hamiltonian H : R
2n → R

given by

H = 1

2

n∑
i=1

((qi)2 + (pi)
2)

and the Hamiltonian vector field H�
H = idH (�) of H with respect to �, that is

H�
H =

n∑
i=1

(
pi∂qi − qi∂pi

)
.

The orbit of H�
H passing through (qi, pi) is the curve α(qi ,pi ) : R → R

2n on R
2n

α(qi ,pi )(t) = (q1 cos t + p1 sin t, . . . , qn cos t + pn sin t,

p1 cos t − q1 sin t, . . . , pn cos t − qn sin t).

Consequently, α(qi ,pi ) is periodic with period 2π which implies that the flow of H�
H

defines a symplectic action of S1 on R
2n with the momentum map given by H. Moreover,

the restriction � of H�
H to S2n−1 is tangent to S2n−1 and � is a regular vector field

on S2n−1, that is, the space of orbits of �, S2n−1/�, has a manifold structure and, thus,
S2n−1/� ∼= S2n−1/S1 is a symplectic manifold. Actually, the reduced symplectic space
S2n−1/S1 is the complex projective space with the standard symplectic structure.

(iii) We call the inverse of the map P �→ JN(P ) = DN the Poissonization of DN ∈ Dk(N).
This map is a homomorphism of the Schouten–Jacobi bracket on D(N) into the Schouten–
Nijenhuis bracket of �-homogeneous multivector fields in a neighbourhood of N in M. In
particular, it maps Jacobi structures into Poisson structures. For free PJ reductive structures
we get, like in [DLM] for the case k = 2, that the Poissonization of DN = P 0

N + IN ∧ P 1
N

is e(1−k)s
(
P 0

N + ∂s ∧ P 1
N

)
on N × R.

Using theorem 3.11 and generalizing remark 3.12 (i), we have the following result
which relates homogeneous Nambu–Poisson tensors on M to Nambu–Jacobi tensors on N
(see [MVV, T] for the definition of a Nambu–Poisson and a Nambu–Jacobi tensor).

Corollary 3.13. Let (M,N,�) be a PJ reductive structure. For a tubular neighbourhood U
of N in M there is a one-to-one correspondence between �|U homogeneous Nambu–Poisson
tensors on M into Nambu–Jacobi tensors on N.

Proof. We know that a tensor P ∈ Ak(M) on a manifold M is Nambu–Poisson if and only if

[[[[. . . [[[[P, f1]]M, f2]]M, . . . , fk−1]]M,P ]]M = 0 (3.6)

for f1, . . . fk−1 ∈ C∞(M) and that D ∈ Dk(M) is a Nambu–Jacobi structure on M if and only
if [[[[

. . .
[[[[

D, f1
]]1

M
, f2

]]1
M

, . . . , fk−1
]]1

M
,D

]]1
M

= 0 (3.7)

for f1, . . . fk−1 ∈ C∞(M).
Therefore, our result follows from (3.6), (3.7) and theorem 3.11. �

The above result is local. We can get global results in particular classes. The following one
has been proved in [GIMPU] for bivector fields by a different method.
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Theorem 3.14. Let E → M be a vector bundle of rank n, n > 1, and let A be an affine
hyperbundle of E, i.e. an affine subbundle of rank (n − 1) and not intersecting the 0-section
of E. Then, the association P �→ JA(P ) establishes a one-to-one correspondence between
�E-homogeneous tensors P ∈ Ak(E), the vector field �E being the Liouville vector field,
and those DA ∈ Dk(A) which are affine, i.e. such that {h1, . . . , hk}DA

is affine whenever
h1, . . . , hk are affine (along fibres) functions on A. Moreover, for this correspondence,

[[JA(P ), JA(Q)]]1
A = JA([[P,Q]]E). (3.8)

Proof. The Liouville vector field �E is clearly transversal to A, so the association P �→ JA(P )

satisfies

({f1, . . . , fk}P )|A = {f1|A, . . . , fk |A}JA(P )

and (3.8) according to theorem 3.11. The affine functions on A are exactly restrictions of
linear functions on E (see lemma 3.15), so JA(P ) is affine.

Conversely, according to theorem 3.11, there is a neighbourhood U of A in E on which �E

nowhere vanishes and a (�E)|U -homogeneous k-vector field PU on U such that DA = JA(PU).
We will show that PU is linear, i.e. that {(f1)|U , . . . , (fk)|U }PU

is the restriction to U of a
linear function on E for all linear functions f1, . . . , fk on E. In the case of a 0-tensor, i.e. a
function f ∈ C∞(U), this means that f is the restriction to U of a linear function on E.

Indeed, since by theorem 3.11

({(f1)|U , . . . , (fk)|U }PU
)|A = {f1|A, . . . , fk |A}DA

the function {(f1)|U , . . . , (fk)|U }PU
is �E-homogeneous on U and its restriction to A is affine,

thus it is the restriction to U of a linear function. Note that every affine function on A has a
unique extension to a linear function on the whole E (see lemma 3.15). Moreover, two �E-
homogeneous functions f and g on U which coincide on A must coincide on the �E orbits of
points from A and, since A is an affine hyperbundle of E not intersecting the 0-section of E,
we deduce that f = g on U.

What remains to be proved is that PU has a unique extension to a �E-homogeneous tensor
on E that follows from lemma 3.16. �

Lemma 3.15. Let E be a real vector bundle over M and A be an affine hyperbundle of E
not intersecting the 0-section 0 : M → E of E. Suppose that A+ is the real vector bundle
over M whose fibre at the point x ∈ M is the real vector space A+

x = Aff(Ax, R), that is,
A+

x is the space of real affine functions on Ax . Then, the map RA : E∗ → A+ defined by
RA(αx) = (αx)|Ax

, for αx ∈ E∗
x is an isomorphism of vector bundles.

Proof. Let x be a point of M and αx ∈ E∗
x . Then, it is easy to prove that RA(αx) ∈ A+

x and that
the map (RA)|E∗

x
: E∗

x → A+
x is linear. Moreover, if RA(αx) = 0, we have that (αx)|Ax

= 0
and, using that 0(x) /∈ Ax , we conclude that αx = 0. Thus, (RA)|E∗

x
is injective and, since

dim E∗
x = dim A+

x = n, we conclude that (RA)|E∗
x

: E∗
x → A+

x is a linear isomorphism. This
proves the result. �

Lemma 3.16. Let τ : E → M be a vector bundle of rank n, n > 1, A be an affine hyperbundle
of E not intersecting the 0-section of E and U be a neighbourhood of A in E. If P is a
linear-homogeneous k-contravariant tensor field on U then P has a unique extension to a
�E-homogeneous (linear) k-contravariant tensor field P̃ on E.

Proof. The statement is local in M, so let us choose local coordinates x = (xa) in V ⊂ M

and the adapted linear coordinates (xa, ξi) on E|V , associated with a choice of a basis of local
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sections of E|V . In these coordinates, the tensor P can be written in the form

P =
∑

i1,...,ik

f k
ξi1,...,ξik

(x, ξ)∂ξi1
⊗ · · · ⊗ ∂ξik

+
∑

i1,...,ik−1,a

f k−1
ξi1,...,ξik−1,x

a (x, ξ)∂ξi1
⊗ · · · ⊗ ∂ξik−1

⊗ ∂xa

+
∑

i1,...,ik−1,a

f k−1
ξi1,...,ξik−2,x

a,ξik−1
(x, ξ)∂ξi1

⊗ · · · ⊗ ∂ξk−2 ⊗ ∂xa ⊗ ∂ξik−1
+ · · ·

+
∑

a1,...,ak

f 0
xa1,...,xak (x, ξ)∂xa1 ⊗ · · · ⊗ ∂xak . (3.9)

By linearity of the tensor P,
{
ξi1, . . . , ξik

}
P

= f k
ξi1 ,...,ξik

(x, ξ) is linear in ξ , so it can be extended
uniquely to a linear function on the whole E|V . Similarly, proceeding by induction with respect
to m one can show that the linearity of{

ξi1 , . . . , x
a1 · ξj1 , . . . , x

am · ξjm
, . . . , ξik−m

}
P

implies that

f k−m
ξi1,...,x

a1 ,...,xam ,...,ξik−m
(x, ξ) · ξj1 · · · ξjm

(3.10)

is linear for all j1, . . . , jm. Once we know that (3.10) are linear, it is easy to see that

f k−1
ξi1,...,x

a1,...,ξik−1
(x, ξ) (3.11)

is constant on fibres, so it extends uniquely to a function which is constant on the fibres
of E|V . On the other hand, since n > 1 and U is a neighbourhood of A in E, there exist
i1, . . . , in−1 ∈ {1, . . . , n} such that

U ∩ {ξik = 0} = ∅ ∀k ∈ {1, . . . , n − 1}.
Using this fact and the linearity of (3.10), we deduce that

f k−m
ξi1,...,x

a1,...,xam,...,ξik−m
(x, ξ) = 0 for m > 1.

Note that if rank(E) = 1, we have that ξil = ξ and there is another possibility, namely

f k−m
ξi1,...,x

a1 ,...,xam,...,ξik−m
(x, ξ) = g(x)ξ 1−m

which clearly does not prolong onto E|V analytically along fibres. Now we define the
prolongation P̃ V of P to E|V by formula (3.9) but with the prolonged coefficients. It is
obvious that this constructed prolongation P̃ V of P to E|V is homogeneous. By uniqueness of
this homogeneous prolongation on every E|V for V running through an open covering of M,
we get a unique homogeneous prolongation to the whole E. �

Remark 3.17. The linearity cannot be replaced by �E-homogeneity in the above lemma.
The simplest counterexample is just the function f (x) = |x| which is x∂x-homogeneous on
U = R\{0} but it is not linear on U.

Finally, we will prove a dual version of theorem 3.11.
Let (M,N,�) be a PJ reductive structure and let U be a tubular neighbourhood of N

in M as in proposition 3.10. The space of sections of the vector bundle ∧k(T 1U)∗ → U

(respectively, ∧k(T 1N)∗ → N) is �k(U) ⊕ �k−1(U) (respectively, �k(N) ⊕ �k−1(N)) and
it is obvious that any α ∈ �k(U) has a unique decomposition

α = 1̃N(α0 + d(ln 1̃N) ∧ α1) (3.12)
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where (α0, α1) ∈ �k(U) ⊕ �k−1(U) and

i�|U α0 = 0 i�|U α1 = 0.

Indeed, since i�|U d(ln 1̃N) = 1, the form α1 is defined by α1 = (̃1N)−1i�|U α and
α0 = (̃1N)−1α−d(ln 1̃N)∧α1. We can use this decomposition to define, for each α ∈ �k(U),
a section �(α) of the vector bundle ∧k(T 1U)∗ → U by the formula

�(α) = (α0, α1).

On the other hand, a section (α0, α1) ∈ �k(U) ⊕ �k−1(U) is said to be �|U -basic if α0 and
α1 are basic forms with respect to �|U , that is

i�|U α0 = 0 i�|U α1 = 0 L�|U α0 = 0 L�|U α1 = 0.

In addition, we will denote by j : N → U the canonical inclusion and by �N : �k(U) →
�k(N) ⊕ �k−1(N) the map defined by

�N(α) = (
α0

N, α1
N

)
for α ∈ �k(U)

where α0
N = j ∗(α), α1

N = j ∗(i�|U α
)
. On the other hand, from (3.12), it follows that

j ∗α = j ∗α0 j ∗(i�|U α
) = j ∗α1 (3.13)

(note that j ∗(1̃N) is the constant function 1 on N ), so α0
N = j ∗(α0) and α1

N = j ∗(α1).

Theorem 3.18. Let (M,N,�) be a PJ reductive structure and let U be a tubular
neighbourhood of N in M as in proposition 3.10. Then

(i) the map � defines a one-to-one correspondence between the space of k-forms on U
which are �U -homogeneous of degree 1 and the space of sections of the vector bundle
∧k(T 1U)∗ → U which are �|U -basic;

(ii) the map �N defines a one-to-one correspondence between the space of k-forms on U
which are �|U -homogeneous of degree 1 and the space of sections of the vector bundle
∧k(T 1N)∗ → N, that is, �k(N) ⊕ �k−1(N).

Moreover, if α ∈ �k(U) is �|U -homogeneous of degree 1 then

�(dUα) = d1
U(�α) �N(dUα) = d1

N(�Nα)

where dU is the usual exterior differential on U and d1
U (respectively, d1

N ) is the Jacobi
differential on U (respectively, N).

Proof. Let α be a k-form on U,

α = 1̃N(α0 + d(ln 1̃N) ∧ α1) (3.14)

with (α0, α1) ∈ �k(U) ⊕ �k−1(U) satisfying i�|U α0 = 0 and i�|U α1 = 0. Then

L�|U α = α + 1̃N

(
L�|U α0 + d(ln 1̃N) ∧ L�|U α1

)
.

Thus, since i�|U
(
L�|U α0

) = 0 and i�|U
(
L�|U α1

) = 0, we conclude that α is �|U -homogeneous
of degree 1 if and only if α0 and α1 are �|U -basic. This proves (i).
Since

j ∗α = j ∗α0 j ∗(i�|U α
) = j ∗α1

using (i) and the fact that the map j ∗ : �r(U) → �r(N) defines a one-to-one correspondence
between the space of �|U -basic r-forms on U and �r(N), we deduce (ii).

Finally, if α ∈ �k(U) is �|U -homogeneous of degree 1 then, from (3.12), we obtain that

dUα = 1̃N(dUα0 + dU(ln 1̃N) ∧ (α0 − dUα1))
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and, since

i�|U (dUα0) = L�|U α0 = 0 i�|U (α0 − dUα1) = −L�|U α1 = 0

we conclude that (see (3.13))

�(dUα) = (dUα0, α0 − dUα1) = d1
U(�α)

�N(dUα) = (dN(j ∗(α0)), j ∗(α0) − dN(j ∗(α1))) = d1
N(�Nα). �

Using theorem 3.18, one may recover the following well-known result (see, for instance, [MS,
proposition 3.58].

Corollary 3.19. If ω is a �|U -homogeneous of degree 1 symplectic form on U, then η = ω1
N

is a contact form on N. The Jacobi structure associated with η is JN(Λ), where Λ is the
�|U -homogeneous Poisson tensor associated with ω.

Proof. Since, according to theorem 3.18,

0 = �N(dω) = d1
N(�Nω) = (

dω0
N, ω0

N − dω1
N

)
we have

dη = dω1
N = ω0

N = j ∗ω. (3.15)

If the dimension of N is 2k + 1, then (3.15) implies

(dη)2k ∧ η = j ∗(ω2k ∧ i∆|U ω
) = 1

k + 1
j ∗(i∆|U ω2(k+1)

)
.

But ω2(k+1) = 0 on U (the form ω is symplectic) and ∆ is transversal to N, so j ∗(i∆|U ω2(k+1)) = 0,
thus (dη)2k ∧η = 0 on N and, therefore, η is a contact 1-form on N. The contact form η induces
an isomorphism of vector bundles �η : T N → T ∗N which on sections takes the form

�η(X) = 〈η,X〉η − iX dη. (3.16)

The Jacobi bracket {f, g}η induced by η is given by {f, g}η = Hη

f (g) − gΓ(f ), where Hη

f is
the ‘Hamiltonian vector field’ of f ∈ C∞(N) defined by

�η

(
Hη

f

) = (df − Γ(f )η) + f η

and Γ is the Reeb vector field of η determined by �η(Γ) = η, i.e. iΓ dη = 0 and 〈η, Γ〉 = 1.
Let {·, ·}ω be the Poisson bracket induced by the symplectic form ω. Due to theorem 3.11,
it remains to prove that {f, g}η = ({f̃ , g̃}ω)|N , where f̃ denotes the unique extension of
f ∈ C∞(N) to a ∆|U -homogeneous function on U. Denote by Hω

f̃
the Hamiltonian vector

field of f̃ with respect to ω, i.e. −iHω

f̃
ω = df̃ . It is easy to see that the Reeb vector field of η

is Γ̃|N, Γ̃ = Hω

1̃N
, and that Hη

f = (
Hω

f̃
+ Γ̃(f̃ )∆|U

)
|N , i.e. Hη

f is the projection of Hω

f̃
along ∆

onto N. We have

{f, g}η = Hη

f (g) − gΓ(f ) = ((
Hω

f̃
+ Γ̃(f̃ )∆|U

)
(̃g)

)
|N − gΓ(f ).

Since ∆|U (̃g) = g̃, it follows that

{f, g}η = (
Hω

f̃
(̃g)

)
|N = ({f̃ , g̃}ω)|N. �

Remark 3.20. If M = R
2n, � is the vector field on M defined by � = 1

2

∑n
i=1

(
qi∂qi +

pi∂pi

)
, U is the open subset of M given by U = R

2n − {0}, ω = ∑n
i=1(dqi ∧ dpi) is the

canonical �|U -homogeneous symplectic 2-form on U and N is the unit sphere S2n−1 in R
2n,

then η is the canonical contact 1-form on S2n−1 (see remark 3.12, (ii)).
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Remark 3.21. A Poisson structure is a particular Lie algebra structure. A useful generalization
of the latter in the graded case is a (strongly) homotopy Lie algebra (sh Lie algebra, L∞-
algebra) which appeared in the works of Stasheff and his collaborators [LM, LS]. Very close
algebraic structures arose in physics as string products of Zwiebach [Zw]. An algebraic
background of a homotopy Lie algebra on a graded vector space V is a graded Lie algebra
structure on the graded space L(V ) = ⊕

n�0 Ln(V ) of (skew-symmetric) multilinear maps
from V into V . The corresponding graded Lie bracket on L(V ) is actually a graded variant
of the Nijenhuis–Richardson bracket [[·, ·]]NR and the homotopy Lie algebra on V is a formal
series B = ∑

n�0 Bnh
n, Bn ∈ Ln(V ), with coefficients which satisfy the ‘master equation’

[[B,B]]NR = 0. One requires additionally that the degree of Bn is n − 2. Of course, when
B reduces to B2, i.e. Bn = 0 for n = 2, we deal with a standard graded Lie bracket on V

induced by B2 : V × V → V of degree 0. When also B1 is nontrivial, the Jacobi identity
for B2 is satisfied only ‘up to homotopy’. One can consider this general scheme skipping the
assumption on the degree and one can work with any subalgebra of L(V ), also for non-graded
V : we just consider the series B with coefficients in the Lie subalgebra of L(V ) and satisfying
the master equation. Of course, this general scheme has nothing to do with ‘homotopy’ in
general, when no grading on V or no proper degree of Bn is assumed.

In our case of the Schouten–Nijenhuis and Schouten–Jacobi brackets, one can consider
their homotopy generalizations which respect the homogeneity, like these brackets do, and
obtain the corresponding Poisson–Jacobi reduction on the level of homotopy algebras, but
detailed discussion of these problems exceeds the limits of this note and we postpone it to a
separate paper.

What we can have for free is the above scheme for the non-graded case of V = C∞(M).
The spaces Ak(M) and Dk(M) can be interpreted as subspaces of Ln(V ) and the brackets
[[·, ·]]M and [[·, ·]]1

M are restrictions of [[·, ·]]NR to Ak(M) and Dk(M), respectively. A
formal Poisson structure on M is a formal series B = ∑

n�0 Bnh
n, Bn ∈ An(M), such

that [[B,B]]M = 0, where we use the obvious extension of the Schouten–Nijenhuis bracket to
formal series of multivector fields: [[B,B]]M = ∑

i,j [[Bi, Bj ]]Mhi+j−1. By properties of the
Schouten–Nijenhuis bracket, only the even part of B is relevant. If B2 is the only nontrivial
part of B, we recognize a standard Poisson structure. If this is the case of B2k , we recognize a
generalized Poisson structure in the sense of Azcárraga, Perelomov and Pérez Bueno [APP1,
APP2] (see also [AIP]). Now, according to theorem 3.11, if B is ∆-homogeneous, we can
reduce B to a formal Jacobi structure on the submanifold N by JN(B) = ∑

i�0 JN(BN), since

[[JN(B), JN(B)]]1
M = JN([[B,B]]M) = 0.

In particular, this reduces generalized Poisson structures on M to generalized Jacobi structures
on N, defined in an obvious way (see [P]). Note also that the corresponding operators ∂B = adB

and ∂JN (B) = adJN (B) act as ‘homotopy differentials’ in the graded Lie algebras Ak(M)[[h]]
and Dk(M)[[h]], i.e. ∂2

B = 0 and ∂2
JN (B) = 0, generalizing the standard Poisson and Jacobi

cohomology.
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[AIP] Azcárraga J A, Izquierdo J M and Pérez Bueno J C 1997 On the higher-order generalizations of Poisson
structures J. Phys. A: Math. Gen. 30 L607–16
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